
PMB (Net-Tech Developments)

PO Box 48-053 1A Beth Street
Wellington, New Zealand Trentham
Phone, Fax = (04) 527-7268 Email = paul@pmb.co.nz

11/09/99 Copyright Paul Bealing 1998 1

PRODUCT NOTE
DATE: 22-Dec-1998 FILE: D31-000105-NN03

CPU_1A1 BOOT-UP OPERATION

INTRODUCTION

Being an eight bit micro, the CPU_1A1 has a 64K address space. The recommended configuration
puts the external SRAM in the bottom 32K and the FLASH in the top 32K.

Within the CPU there is also 1K of additional RAM and 512 bytes of EEPROM. The CPU also has a
group of control registers that are memory mapped. These are internal to the CPU and by default,
override external memory space. This means that they are always accessible.

The 68HC11 fetches reset and interrupt vectors from the top of the address space. This would
normally be FLASH memory.

When the micro comes out of reset in expanded mode, the bank select lines are undefined. This
means that any of the banks of FLASH could be selected, and until the bank select outputs are
initialised, it can change.

Bank select outputs and chip selects, are configured by writing to internal CPU registers. This is one
of the first things that should be done out of reset.

The solution to the reset problem is to map the CPU internal EEPROM to the top of the address
space. This will override the top 512 bytes of every bank of FLASH memory. Reset and Interrupt
vectors and a small boot program are saved into the top end EEPROM. This area can be protected
from further writing if required.

Be careful of the EEPROM CONFIG register. It cannot be read directly, due to the working copy. It
should be written with FFh to ensure that the EEPROM is mapped to the right place.

The small boot program in EEPROM will configure the memory map, bank select outputs and other
CPU functions, then JUMP and run code in FLASH.

The boot program, vectors and EEPROM memory mapping should be configured using the special
bootstrap mode (both links on).

The CPU can boot into one of four modes depending on the combination of links. Looking at the
component side of the board with the CPU (large chip) on the left, there are two jumpers to the lower
right. Left to right, they are Mode B and Mode A.

PMB (Net-Tech Developments)

PO Box 48-053 1A Beth Street
Wellington, New Zealand Trentham
Phone, Fax = (04) 527-7268 Email = paul@pmb.co.nz

11/09/99 Copyright Paul Bealing 1998 2

MODE B MODE A
off off = expanded mode, for running the application
off on = single chip mode, not used
on off = special test mode, not often used
on on = bootstrap mode, for initalising/loading

EXAMPLE BOOT PROGRAM

Following is a code example that can be used to boot the CPU and run a program starting at the
bottom of the first bank of FLASH.

The ORG directive locates the code when it’s assembled. In this case 2000h is in SRAM. A loader
program (not shown here) will load the code and then copy it to EEPROM. Starting at FF00h.

This code occupies the top 256 bytes of EEPROM, most of which is unused. Modifying the ORG
directive could free up the unused space.

The interrupt vectors are all forced to the boot program in EEPROM. These would normally point to
interrupt service routines somewhere.

;**
;**
; EEPROM RESIDENT BOOT CODE * SECTION 2 *

; This section of code is copied from RAM into the top of EEPROM
; Its purpose is to allow easy booting of the CPU without having to
; pre-load the Flash banks with boot code. The Flash bank select
; addressing is indeterminate (messed up) following reset because
; port G defaults to input.
; The EEPROM is mapped to the top of the address space. It therefore
; contains the reset and interrupt vectors. The top 288 bytes of
; EEPROM are normally protected to minimise the possibiity of
; accidentally making the module unbootable.

BOOT ORG 2000H ; first 256 bytes of external RAM

; INITIAL CPU SETUP FOR LOADER

LDS #01FFH ; init stack
LDX #1000H ; register base address

LDAA #10010001B ; adpu, irqe, dly, cop = 65mS
STAA OPTION,X

LDAA #00000101B
STAA CSCTL,X ; enable program CS for 32K
LDAA #00000000B
STAA CSGADR,X ; RAM starts at address 0000H
LDAA #00000001B

PMB (Net-Tech Developments)

PO Box 48-053 1A Beth Street
Wellington, New Zealand Trentham
Phone, Fax = (04) 527-7268 Email = paul@pmb.co.nz

11/09/99 Copyright Paul Bealing 1998 3

STAA CSGSIZ,X ; RAM block size is 32K
LDAA #00001111B
STAA DDRG,X ; bank select bits = outputs
CLR PORTG,X ; select 1ST bank

JMP 8000H ; point to APPLICATION in FLASH

;************
; Copyright Notice

DFB " LOADER V1.00 01 DEC 1998 "
DFB " (c) 1998 PMB "

FILL 0FFH ; fill gap with "FF"

;************
; RESET & INTERRUPT VECTORS

; Make these point to the appropriate service routines within the application.

ORG 20FFH-29H ; Reset & Interrupt vectors for EEPROM

DWM 0FF00H ; SCI ; D6 SCI (FFD6)
DWM 0FF00H ; SPI ; D8 SPI
DWM 0FF00H ; PAIE ; DA PULSE ACCUMULATOR I/P EDGE
DWM 0FF00H ; PAO ; DC PULSE ACCUMULATOR OVERFLOW
DWM 0FF00H ; TOF ; DE TIMER OVERFLOW
DWM 0FF00H ; OC5 ; E0 TIMER O/P COMPARE 5
DWM 0FF00H ; OC4 ; E2 TIMER O/P COMPARE 4
DWM 0FF00H ; OC3 ; E4 TIMER O/P COMPARE 3
DWM 0FF00H ; OC2 ; E6 TIMER O/P COMPARE 2
DWM 0FF00H ; OC1 ; E8 TIMER O/P COMPARE 1
DWM 0FF00H ; IC3 ; EA TIMER I/P COMPARE 3
DWM 0FF00H ; IC2 ; EC TIMER I/P COMPARE 2
DWM 0FF00H ; IC1 ; EE TIMER I/P COMPARE 1
DWM 0FF00H ; RTI ; F0 REAL TIME INTERRUPT
DWM 0FF00H ; IRQ ; F2 EXTERNAL IRQ
DWM 0FF00H ; XIRQ ; F4 EXTERNAL XIRQ
DWM 0FF00H ; SCI ; F6 SOFTWARE INTERRUPT (SWI)
DWM 0FF00H ; ILLOP ; F8 ILLEGAL OPCODE
DWM 0FF00H ; COP ; FA COP OPERATED
DWM 0FF00H ; CLM ; FC CLOCK MONITOR OPERATED
DWM 0FF00H ; START ; FE RESET

BOOTEND ; end of boot code loaded into EEPROM

;**
;**

These code examples have been written for the Cross-32 Meta Assembler V4.0. Syntax will have to
be changed for the Motorolla AS11 freeware assembler.

Code samples are provided as examples only. There is no guarantee that the examples will work in a
particular environment when applied.

